Title of article :
Blow-up and global existence for nonlinear parabolic equations with
Neumann boundary conditions
Author/Authors :
Juntang Ding، نويسنده , , Bao-Zhu Guoa، نويسنده , , b، نويسنده , , c، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
In this paper, we study the global and blow-up solutions of the following problem:
8><
>:
.h.u//t D r .a.u; t/b.x/ru/ C g.t/f .u/ in D .0; T /;
@u
@n
D 0 on @D .0; T /;
u.x; 0/ D u0.x/ > 0 in D;
where D RN is a bounded domain with smooth boundary @D. By constructing auxiliary
functions and using maximum principles and comparison principles, the sufficient
conditions for the existence of global solution, an upper estimate of the global solution,
the sufficient conditions for the existence of the blow-up solution, an upper bound for the
``blow-up timeʹʹ, and an upper estimate of the ``blow-up rateʹʹ are specified under some
appropriate assumptions on the functions a; b; f ; g; and h.
Keywords :
Parabolic equation , global solution , Blow-up solution , Neumann boundary condition
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications