Title of article :
The bipanpositionable bipancyclic property of the hypercubeI,II
Author/Authors :
Yuan-Kang Shih، نويسنده , , Cheng-Kuan Lin، نويسنده , , Jimmy J.M. Tana، نويسنده , , Lih-Hsing Hsub، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2009
Abstract :
A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to jV.G/j
inclusive. A hamiltonian bipartite graph G is bipanpositionable if, for any two different
vertices x and y, there exists a hamiltonian cycle C of G such that dC .x; y/ D k for any integer
k with dG.x; y/ k jV.G/j=2 and .kdG.x; y// being even. A bipartite graph G is k-cycle
bipanpositionable if, for any two different vertices x and y, there exists a cycle of G with
dC .x; y/ D l and jV.C/j D k for any integer l with dG.x; y/ l k2and .ldG.x; y// being
even. A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for
every even integer k, 4 k jV.G/j. We prove that the hypercube Qn is bipanpositionable
bipancyclic for n 2.
Keywords :
Bipanpositionable , Bipancyclic , Hamiltonian , Hypercube
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications