Title of article :
Pattern recognition using boundary data of component distributions
Author/Authors :
Masako Omachi a، نويسنده , , ?، نويسنده , , Shinichiro Omachi b، نويسنده , , Hirotomo Aso c، نويسنده , , Tsuneo Saito d، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
7
From page :
466
To page :
472
Abstract :
In statistical pattern recognition, a Gaussian mixture model is sometimes used for representing the distribution of vectors. The parameters of the Gaussian mixture model are usually estimated from given sample data by the expectation maximization algorithm. However, when the number of data attributes is large, the parameters cannot be estimated correctly. In this paper, we propose a novel approach for estimating the parameters of the Gaussian mixture model by using sample data located on the boundary of regions defined by the component density functions. Experiments are carried out to show the characteristics of the proposed method.
Keywords :
Probabilistic model , Gaussian mixture model , High-dimensional vector , Parameter estimation , Pattern recognition
Journal title :
Computers & Industrial Engineering
Serial Year :
2011
Journal title :
Computers & Industrial Engineering
Record number :
926068
Link To Document :
بازگشت