Title of article :
Pattern recognition using boundary data of component distributions
Author/Authors :
Masako Omachi a، نويسنده , , ?، نويسنده , , Shinichiro Omachi b، نويسنده , , Hirotomo Aso c، نويسنده , , Tsuneo Saito d، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Abstract :
In statistical pattern recognition, a Gaussian mixture model is sometimes used for representing the distribution
of vectors. The parameters of the Gaussian mixture model are usually estimated from given
sample data by the expectation maximization algorithm. However, when the number of data attributes
is large, the parameters cannot be estimated correctly. In this paper, we propose a novel approach for
estimating the parameters of the Gaussian mixture model by using sample data located on the boundary
of regions defined by the component density functions. Experiments are carried out to show the characteristics
of the proposed method.
Keywords :
Probabilistic model , Gaussian mixture model , High-dimensional vector , Parameter estimation , Pattern recognition
Journal title :
Computers & Industrial Engineering
Journal title :
Computers & Industrial Engineering