Title of article :
Business failurepredictionusinghybrid2 case-based reasoning(H2CBR)
Author/Authors :
Hui Li، نويسنده , , JieSun، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
15
From page :
137
To page :
151
Abstract :
We haveinvestigatedbusinessfailureprediction(BFP)byacombinationofdecision-aid,statistical,and artificial intelligencetechniques.ThegoalistoconstructahybridforecastingmethodforBFPbycombin- ing variousoutrankingpreferencefunctionswithcase-basedreasoning(CBR),whoseheartisthe k-nearest neighbor (k-NN) algorithm,andtoempiricallytestthepredictiveperformanceofitsmodules.Thehybrid2 CBR (H2CBR) forecastingmethodwasconstructedbyintegratingsixhybridCBRmodules.Thesehybrid CBR moduleswerebuiltupbycombiningandmodifyingsixoutrankingpreferencefunctionswiththe algorithm of k-NN insideCBR.Atrial-and-erroriterativeprocesswasemployedtoidentifytheoptimal hybrid CBRmoduleoftheH2CBR forecastingsystem.Thepredictionoftheoptimalmoduleisthefinal output oftheH2CBR forecastingmethod.Wehavecomparedthepredictiveperformanceofthesixhybrid CBR modulesinBFPofChineselistedcompanies.Inthisempiricalstudy,theclassicalCBRalgorithm based ontheEuclideanmetric,andthetwoclassicalstatisticalmethodsoflogisticregression(Logit)and multivariate discriminantanalysis(MDA)wereusedasbaselinemodelsforcomparison.Featuresubsets were selectedwiththestepwisemethodofMDA.ThepredictiveperformanceoftheH2CBR systemis promising; themostpreferredhybridCBRforshort-termBFPofChineselistedcompaniesisbasedonthe ranking-order preferencefunction.
Keywords :
k-nearest neighbour , Hybrid2 case-based reasoning (H2CBR) , Business failure prediction , Outranking approaches , PROMETHEE , ELECTRE , ORESTE
Journal title :
Computers and Operations Research
Serial Year :
2010
Journal title :
Computers and Operations Research
Record number :
927630
Link To Document :
بازگشت