Title of article :
Business failurepredictionusinghybrid2 case-based reasoning(H2CBR)
Author/Authors :
Hui Li، نويسنده , , JieSun، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
We haveinvestigatedbusinessfailureprediction(BFP)byacombinationofdecision-aid,statistical,and
artificial intelligencetechniques.ThegoalistoconstructahybridforecastingmethodforBFPbycombin-
ing variousoutrankingpreferencefunctionswithcase-basedreasoning(CBR),whoseheartisthe k-nearest
neighbor (k-NN) algorithm,andtoempiricallytestthepredictiveperformanceofitsmodules.Thehybrid2
CBR (H2CBR) forecastingmethodwasconstructedbyintegratingsixhybridCBRmodules.Thesehybrid
CBR moduleswerebuiltupbycombiningandmodifyingsixoutrankingpreferencefunctionswiththe
algorithm of k-NN insideCBR.Atrial-and-erroriterativeprocesswasemployedtoidentifytheoptimal
hybrid CBRmoduleoftheH2CBR forecastingsystem.Thepredictionoftheoptimalmoduleisthefinal
output oftheH2CBR forecastingmethod.Wehavecomparedthepredictiveperformanceofthesixhybrid
CBR modulesinBFPofChineselistedcompanies.Inthisempiricalstudy,theclassicalCBRalgorithm
based ontheEuclideanmetric,andthetwoclassicalstatisticalmethodsoflogisticregression(Logit)and
multivariate discriminantanalysis(MDA)wereusedasbaselinemodelsforcomparison.Featuresubsets
were selectedwiththestepwisemethodofMDA.ThepredictiveperformanceoftheH2CBR systemis
promising; themostpreferredhybridCBRforshort-termBFPofChineselistedcompaniesisbasedonthe
ranking-order preferencefunction.
Keywords :
k-nearest neighbour , Hybrid2 case-based reasoning (H2CBR) , Business failure prediction , Outranking approaches , PROMETHEE , ELECTRE , ORESTE
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research