Author/Authors :
Lixin Tang، نويسنده , , HuizhiRen، نويسنده ,
Abstract :
This paperstudiestheslabstackshuffling(SSS)problemintheslabyard,whichisakeylogisticsproblem
between thecontinuouscastingstageandthehotrollingmillinthesteelindustry.Theproblemisto
choose appropriateslabsforasequenceofrollingitems,fromtheirrespectivecandidateslabsets(families)
with aviewtoreducingtheresultingshufflingworkload.AlthoughtheSSSproblemhasbeeninvestigated
by afewresearchers,theproblemunderconsiderationhasseveralnewfeatures.Oneofthemisthatthe
shuffled slabwillnotreturntheoriginalstackbutremainatthenewposition.Anotherrequiresthatevery
selected slabbetakenoutintime,whichwillresultinbalancingthecraneworkloadsamongthestorage
areas oftheslabyardtoadegree.Inaddition,thelocalsimilarityofslabfamiliesisalsoconsidered,the
closer theitemsintherollingsequence,themorethecommonslabsbetweenthecorrespondingfamilies.
For theproblem,anintegerprogrammingmodelisproposedbyconsideringtheabovefeaturesandre-
quirements. Forsmall-scaledproblem,adynamicprogrammingapproachisfirstconstructedtoobtainits
optimal solution.Forthepracticalscale,duetoitsintractability,weproposeasegmenteddynamicpro-
gramming (SDP)-basedheuristic,whichpartitionsthesequenceofitemsintoaseriesofsegments,each
of whichcorrespondstoasubproblem.Thesubproblemsaresolvedsequentiallyusingthedynamicpro-
gramming. Andthereassignmentstrategyofcommonslabsandtheexchangestrategyofcandidateslabs
are designedtoimprovetheheuristic.Twointerestingpropertiesoftheproblemarealsoderivedtospeed
up theSDP-basedheuristicapproach.Theexperimentresultsshowthattheheuristicisveryclosetothe
optimum inaveragesolutionqualityforthesmall-scaledproblem,obviouslybetterthantheCPOptimizer
for themediumscale,andcanreducethecraneworkloadby10.76%onaverageforthepracticalscale.
Keywords :
Segmented dynamic programming , Slab stack shuffling , Crane workload , Heuristic