Title of article :
DEMORS:Ahybridmulti-objectiveoptimizationalgorithmusingdifferentialevolution and roughsettheoryforconstrainedproblems
Author/Authors :
Luis V.Santana-Quintero، نويسنده , , AlfredoG.Hern?ndez-D?azb، نويسنده , , Juli?nMolinac، نويسنده , , CarlosA.CoelloCoello، نويسنده , , Rafael Caballeroc، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
11
From page :
470
To page :
480
Abstract :
The aimofthispaperistoshowhowthehybridizationofamulti-objectiveevolutionaryalgorithm (MOEA) andalocalsearchmethodbasedontheuseofroughsettheoryisaviablealternativetoobtaina robust algorithmabletosolvedifficultconstrainedmulti-objectiveoptimizationproblemsatamoderate computational cost.ThispaperextendsapreviouslypublishedMOEA[Hernández-DíazAG,Santana- Quintero LV,CoelloCoelloC,CaballeroR,MolinaJ.Anewproposalformulti-objectiveoptimizationusing differential evolutionandroughsettheory.In:2006geneticandevolutionarycomputationconference (GECCOʹ2006). Seattle,Washington,USA:ACMPress;July2006],whichwaslimitedtounconstrained multi-objective optimizationproblems.Here,themainideaistousethissortofhybridapproachto approximate theParetofrontofaconstrainedmulti-objectiveoptimizationproblemwhileperforminga relatively lownumberoffitnessfunctionevaluations.Sinceinreal-worldproblemsthecostofevaluating the objectivefunctionsisthemostsignificant,ourunderlyingassumptionisthat,byaimingtominimize the numberofsuchevaluations,ourMOEAcanbeconsideredefficient.Asinitspreviousversion,our hybrid approachoperatesintwostages:inthefirstone,amulti-objectiveversionofdifferentialevolution is usedtogenerateaninitialapproximationoftheParetofront.Then,inthesecondstage,roughset theory isusedtoimprovethespreadandqualityofthisinitialapproximation.Toassesstheperformance of ourproposedapproach,weadopt,ontheonehand,asetofstandardbi-objectiveconstrainedtest problems and,ontheotherhand,alargereal-worldproblemwitheightobjectivefunctionsand160 decision variables.Thefirstsetofproblemsaresolvedperforming10,000fitnessfunctionevaluations, which isacompetitivevaluecomparedtothenumberofevaluationspreviouslyreportedinthespecial- ized literatureforsuchproblems.Thereal-worldproblemissolvedperforming250,000fitnessfunction evaluations, mainlybecauseofitshighdimensionality.Ourresultsarecomparedwithrespecttothose generated byNSGA-II,whichisaMOEArepresentativeofthestate-of-the-artinthearea.
Keywords :
Multi-objective optimization , Hybrid algorithms , Differential evolution , Rough set theory
Journal title :
Computers and Operations Research
Serial Year :
2010
Journal title :
Computers and Operations Research
Record number :
927662
Link To Document :
بازگشت