Author/Authors :
Luis V.Santana-Quintero، نويسنده , , AlfredoG.Hern?ndez-D?azb، نويسنده , , Juli?nMolinac، نويسنده , , CarlosA.CoelloCoello، نويسنده , ,
Rafael Caballeroc، نويسنده ,
Abstract :
The aimofthispaperistoshowhowthehybridizationofamulti-objectiveevolutionaryalgorithm
(MOEA) andalocalsearchmethodbasedontheuseofroughsettheoryisaviablealternativetoobtaina
robust algorithmabletosolvedifficultconstrainedmulti-objectiveoptimizationproblemsatamoderate
computational cost.ThispaperextendsapreviouslypublishedMOEA[Hernández-DíazAG,Santana-
Quintero LV,CoelloCoelloC,CaballeroR,MolinaJ.Anewproposalformulti-objectiveoptimizationusing
differential evolutionandroughsettheory.In:2006geneticandevolutionarycomputationconference
(GECCOʹ2006). Seattle,Washington,USA:ACMPress;July2006],whichwaslimitedtounconstrained
multi-objective optimizationproblems.Here,themainideaistousethissortofhybridapproachto
approximate theParetofrontofaconstrainedmulti-objectiveoptimizationproblemwhileperforminga
relatively lownumberoffitnessfunctionevaluations.Sinceinreal-worldproblemsthecostofevaluating
the objectivefunctionsisthemostsignificant,ourunderlyingassumptionisthat,byaimingtominimize
the numberofsuchevaluations,ourMOEAcanbeconsideredefficient.Asinitspreviousversion,our
hybrid approachoperatesintwostages:inthefirstone,amulti-objectiveversionofdifferentialevolution
is usedtogenerateaninitialapproximationoftheParetofront.Then,inthesecondstage,roughset
theory isusedtoimprovethespreadandqualityofthisinitialapproximation.Toassesstheperformance
of ourproposedapproach,weadopt,ontheonehand,asetofstandardbi-objectiveconstrainedtest
problems and,ontheotherhand,alargereal-worldproblemwitheightobjectivefunctionsand160
decision variables.Thefirstsetofproblemsaresolvedperforming10,000fitnessfunctionevaluations,
which isacompetitivevaluecomparedtothenumberofevaluationspreviouslyreportedinthespecial-
ized literatureforsuchproblems.Thereal-worldproblemissolvedperforming250,000fitnessfunction
evaluations, mainlybecauseofitshighdimensionality.Ourresultsarecomparedwithrespecttothose
generated byNSGA-II,whichisaMOEArepresentativeofthestate-of-the-artinthearea.
Keywords :
Multi-objective optimization , Hybrid algorithms , Differential evolution , Rough set theory