Title of article :
A goalprogrammingapproachtoestimatingperformanceweightsfor
ranking firms
Author/Authors :
Fernando Garc?´a ، نويسنده , , FranciscoGuijarro، نويسنده , , IsmaelMoya، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
This paperproposesseveralgoalprogramming(GP)modelsforestimatingtheperformancemeasure
weightsoffirmsbymeansofconstrainedregression.Sincesomesingle-criterionperformancemeasures
are usuallyinconflict,weproposetwoopposedalternativesfordeterminingmultiple-criterion
performance:thefirstistocalculateaconsensusperformancethatreflectsthemajoritytrendofthe
single-criterionmeasuresandtheotheristocalculateaperformancethatisbiasedtowardsthe
measuresthatshowthemostdiscrepancywiththerest.GPmakesitpossibletomodelbothapproaches
as wellasacompromisebetweenthetwoextremes.Usingtwocasestudiesreportedintheliterature
and introducinganotheroneexaminingnon-financialcompanieslistedinIbex-35,wecompareour
proposalwithothermethodssuchasCRITICandamodifiedversionofTOPSIS.Inordertoimprovethe
comparisonsaMontecarlosimulationhasbeenperformedinallthreecasestudies.
Scopeandpurpose: The studyfallsintotheareaofmultiple-criteriaanalysisofbusinessperformance.
Firms areobligedtoreportavastamountoffinancialinformationatregularintervals,andforthisthere
is awiderangeofperformancemeasures.Multicriteriaperformanceiscalculatedfromthesingle-
criterionmeasuresandisthenusedtodrawuprankingsoffirms.Asacomplementtotheother
multicriteriamethodsdescribedintheliterature,weproposetheuseofGPforimplementingtwoquite
differentstrategies:overweightingthemeasuresinlinewiththegeneraltrendoroverweightingthe
measuresthatconflictwiththerest.BesidestheuseofSpearman’scorrelation,weintroducetwoother
measuresforcomparingthesolutionsobtained.
Keywords :
Goal programming , Firm performance , Firm ranking , Multicriteria decision making
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research