Title of article :
A strategyforreducingthecomputationalcomplexityoflocalsearch-based
methods forthevehicleroutingproblem
Author/Authors :
Emmanouil E.Zachariadis، نويسنده , , ChrisT.Kiranoudis، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Abstract :
This articlefocusesonthemechanismofevaluatingsolutionneighborhoods,analgorithmicaspect
which playsacrucialroleontheefficiencyoflocal-searchbasedapproaches.Inspecific,itpresentsa
strategyforreducingthecomputationalcomplexityrequiredforapplyinglocalsearchtotacklevarious
combinatorialoptimizationproblems.Thevalueofthiscontributionistwo-fold.Ithelpspractitioners
design efficientlocalsearchimplementations,anditfacilitatestheapplicationofrobustcommercial
local search-basedalgorithmstopracticalinstancesofverylargesize.Thecentralrationaleunderlying
the proposedcomplexityreductionstrategyisstraightforward:whenalocalsearchoperatorisapplied
to agivensolution,onlyalimitedpartofthissolutionismodified.Thus,toexhaustivelyexaminethe
neighborhoodofthenewsolution,onlythetentativemovesthatrefertothemodifiedsolutionpart
have tobeevaluated.Toreducethecomplexityofneighborhoodevaluation,thestaticmovedescriptor
(SMD)datastructuresareintroduced,whichencodelocalsearchmovesinasystematicandsolution
independentmanner.Theproposedstrategyisappliedtothevehicleroutingproblem(VRP)whichisof
high importancebothfromthepracticalandtheoreticalviewpoints.TheuseoftheSMDconcept,for
encodingthreecommonlyappliedquadraticlocalsearchoperators,resultsintoaVRPlocalsearch
methodwhichexhibitsanalmostlinearithmiccomplexityinrespecttotheinstancesize.Furthermore,
exploitingtheSMDrepresentationoftentativemoves,ametaheuristicstrategyisproposed,whichis
aimedatdiversifyingtheconductedsearchviaasimplepenalizationpolicy.Theproposed
metaheuristicwastestedonvariouslargeandverylargescaleVRPbenchmarkinstances.Itproduced
fine results,andmanagedtoimproveseveralbestknownsolutions.Themethodwasalsoexecutedon
real-worldinstancesof3000customers,thedataofwhichreflectstheactualgeographicdistributionof
customerswithinfourmajorcities.
Keywords :
Local search , vehicle routing , Combinatorial optimization , Computational complexity
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research