Title of article :
A meta-heuristicapproachforimprovingtheaccuracyinsome classification algorithms
Author/Authors :
Huy NguyenAnhPham، نويسنده , , EvangelosTriantaphyllou، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
16
From page :
174
To page :
189
Abstract :
Currentclassificationalgorithmsusuallydonottrytoachieveabalancebetweenfittingand generalizationwhentheyinfermodelsfromtrainingdata.Furthermore,currentalgorithmsignore the factthattheremaybedifferentpenaltycostsforthefalse-positive,false-negative,andunclassifiable types. Thus,theirperformancemaynotbeoptimalormayevenbecoincidental.Thispaperproposesa meta-heuristicapproach,calledtheConvexityBasedAlgorithm(CBA),toaddresstheseissues.Thenew approachaimsatoptimallybalancingthedatafittingandgeneralizationbehaviorsofmodelswhen sometraditionalclassificationapproachesareused.TheCBAfirstdefinesthetotalmisclassificationcost (TC) asaweightedfunctionofthethreepenaltycostsandthecorrespondingerrorratesasmentioned above. Nextitpartitionsthetrainingdataintoregions.Thisisdoneaccordingtosomeconvexity propertiesderivablefromthetrainingdataandthetraditionalclassificationmethodtobeusedin conjunctionwiththeCBA.NexttheCBAusesageneticapproachtodeterminetheoptimallevelsof fitting andgeneralization.The TC is usedasthefitnessfunctioninthisgeneticapproach.Twelvereal- life datasetsfromawidespectrumofdomainswereusedtobetterunderstandtheeffectivenessofthe proposedapproach.ThecomputationalresultsindicatethattheCBAmaypotentiallyfillinacriticalgap in theuseofcurrentorfutureclassificationalgorithms.
Keywords :
classification , Fitting , False positive , Generalization , False negative , Unclassifiable , Convex region , Genetic algorithms , Optimization
Journal title :
Computers and Operations Research
Serial Year :
2011
Journal title :
Computers and Operations Research
Record number :
927845
Link To Document :
بازگشت