Title of article :
A differentialevolutionalgorithmwithself-adaptingstrategyand control parameters
Author/Authors :
Quan-Ke Pan، نويسنده , , P.N.Suganthan، نويسنده , , LingWangc، نويسنده , , LiangGao، نويسنده , , R.Mallipeddi ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
15
From page :
394
To page :
408
Abstract :
This paperpresentsa Differential Evolutionalgorithmwith self-adaptivetrialvectorgeneration strategyandcontrol parameters(SspDE)forglobalnumericaloptimizationovercontinuousspace.In the SspDEalgorithm,eachtargetindividualhasanassociatedstrategylist(SL),amutationscalingfactor F list (FL),andacrossoverrate CR list (CRL).Duringtheevolution,atrialindividualisgeneratedbyusing a strategy, F, and CR taken fromthelistsassociatedwiththetargetvector.Iftheobtainedtrialindividual is betterthanthetargetvector,theusedstrategy, F, and CR will enterawinningstrategylist(wSL), a winning F list (wFL), andawinning CR list (wCRL), respectively.Afteragivennumberofiterations,the FL, CRL or SL will berefilledatahighprobabilitybyselectingelementsfrom wFL, wCRL and wSL or randomlygeneratedvalues.Inthisway,boththetrialvectorgenerationstrategyanditsassociated parameterscanbegraduallyself-adaptedtomatchdifferentphasesofevolutionbylearningfromtheir previoussuccessfulexperience.Extensivecomputationalsimulationsandcomparisonsarecarriedout by employingasetof19benchmarkproblemsfromtheliterature.Thecomputationalresultsshowthat overalltheSspDEalgorithmperformsbetterthanthestate-of-the-artdifferentialevolutionvariants.
Keywords :
Global numerical optimization , Parameter adaptation , Strategy adaptation , Continuous optimization , Differential evolution , Evolutionary algorithm
Journal title :
Computers and Operations Research
Serial Year :
2011
Journal title :
Computers and Operations Research
Record number :
927865
Link To Document :
بازگشت