Title of article :
A differentialevolutionalgorithmwithself-adaptingstrategyand
control parameters
Author/Authors :
Quan-Ke Pan، نويسنده , , P.N.Suganthan، نويسنده , , LingWangc، نويسنده , , LiangGao، نويسنده , , R.Mallipeddi ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Abstract :
This paperpresentsa Differential Evolutionalgorithmwith self-adaptivetrialvectorgeneration
strategyandcontrol parameters(SspDE)forglobalnumericaloptimizationovercontinuousspace.In
the SspDEalgorithm,eachtargetindividualhasanassociatedstrategylist(SL),amutationscalingfactor
F list (FL),andacrossoverrate CR list (CRL).Duringtheevolution,atrialindividualisgeneratedbyusing
a strategy, F, and CR taken fromthelistsassociatedwiththetargetvector.Iftheobtainedtrialindividual
is betterthanthetargetvector,theusedstrategy, F, and CR will enterawinningstrategylist(wSL), a
winning F list (wFL), andawinning CR list (wCRL), respectively.Afteragivennumberofiterations,the
FL, CRL or SL will berefilledatahighprobabilitybyselectingelementsfrom wFL, wCRL and wSL or
randomlygeneratedvalues.Inthisway,boththetrialvectorgenerationstrategyanditsassociated
parameterscanbegraduallyself-adaptedtomatchdifferentphasesofevolutionbylearningfromtheir
previoussuccessfulexperience.Extensivecomputationalsimulationsandcomparisonsarecarriedout
by employingasetof19benchmarkproblemsfromtheliterature.Thecomputationalresultsshowthat
overalltheSspDEalgorithmperformsbetterthanthestate-of-the-artdifferentialevolutionvariants.
Keywords :
Global numerical optimization , Parameter adaptation , Strategy adaptation , Continuous optimization , Differential evolution , Evolutionary algorithm
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research