Title of article :
HybridizingprinciplesofTOPSISwithcase-basedreasoning
for businessfailureprediction
Author/Authors :
Hui Li ، نويسنده , , HojjatAdeli، نويسنده , , JieSun، نويسنده , , Jian-GuangHan ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Abstract :
Case-basedreasoning(CBR)solvesmanyreal-worldproblemsundertheassumptionthatsimilar
observationshavesimilar outputs. Asanimplementationofthisassumptionandinspiredbythe
techniquefororderperformancebythesimilaritytoidealsolution(TOPSIS),thispaperproposesanew
type ofmultiplecriteriaCBRmethodforbinarybusinessfailureprediction(BFP)withsimilaritiesto
positiveandnegativeidealcases(SPNIC).Assumingthatthebinarypredictionofbusinessfailure
generatestworesults,i.e.,failureandnon-failure,wesettheprincipleofthisCBRforecastingmethod
which istermedasSPNIC-basedCBRasfollows:newobservationsshouldhavethesameoutputas
the positiveornegativeidealcasetowhichtheyaremoresimilar.FromtheperspectiveofCBR,the
SPNIC-basedCBRforecastingmethodconsistsofR4 processes:retrievingpositiveandnegativeideal
cases,reusingsolutionsofidealcasestoforecast,retain cases, andreconstructthecasebase.Asa
demonstration,weappliedthismethodtoforecastbusinessfailureinChinawiththreedata
representationsofa formerly collected dataset from normaleconomicenvironment and arepresentation
of a recently collecteddataset from financial crisis environment. TheresultsindicatethatthisnewCBR
forecastingmethodcanproducesignificantlybettershort-termdiscriminatecapabilitythan
comparativemethods,exceptforsupportvectormachine,innormaleconomicenvironment;Onthe
contrary,itcannotproduceacceptableperformanceinfinancialcrisisenvironment.Furthertopics
aboutthismethodarediscussed.
Keywords :
TOPSIS , Multiple criteria case-based reasoning , Similarities to positive and negative ideal cases , Business failure prediction
Journal title :
Computers and Operations Research
Journal title :
Computers and Operations Research