Title of article :
HybridizingprinciplesofTOPSISwithcase-basedreasoning for businessfailureprediction
Author/Authors :
Hui Li ، نويسنده , , HojjatAdeli، نويسنده , , JieSun، نويسنده , , Jian-GuangHan ، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
11
From page :
409
To page :
419
Abstract :
Case-basedreasoning(CBR)solvesmanyreal-worldproblemsundertheassumptionthatsimilar observationshavesimilar outputs. Asanimplementationofthisassumptionandinspiredbythe techniquefororderperformancebythesimilaritytoidealsolution(TOPSIS),thispaperproposesanew type ofmultiplecriteriaCBRmethodforbinarybusinessfailureprediction(BFP)withsimilaritiesto positiveandnegativeidealcases(SPNIC).Assumingthatthebinarypredictionofbusinessfailure generatestworesults,i.e.,failureandnon-failure,wesettheprincipleofthisCBRforecastingmethod which istermedasSPNIC-basedCBRasfollows:newobservationsshouldhavethesameoutputas the positiveornegativeidealcasetowhichtheyaremoresimilar.FromtheperspectiveofCBR,the SPNIC-basedCBRforecastingmethodconsistsofR4 processes:retrievingpositiveandnegativeideal cases,reusingsolutionsofidealcasestoforecast,retain cases, andreconstructthecasebase.Asa demonstration,weappliedthismethodtoforecastbusinessfailureinChinawiththreedata representationsofa formerly collected dataset from normaleconomicenvironment and arepresentation of a recently collecteddataset from financial crisis environment. TheresultsindicatethatthisnewCBR forecastingmethodcanproducesignificantlybettershort-termdiscriminatecapabilitythan comparativemethods,exceptforsupportvectormachine,innormaleconomicenvironment;Onthe contrary,itcannotproduceacceptableperformanceinfinancialcrisisenvironment.Furthertopics aboutthismethodarediscussed.
Keywords :
TOPSIS , Multiple criteria case-based reasoning , Similarities to positive and negative ideal cases , Business failure prediction
Journal title :
Computers and Operations Research
Serial Year :
2011
Journal title :
Computers and Operations Research
Record number :
927866
Link To Document :
بازگشت