Title of article :
Operators on Spaces of Analytic Functions Belonging to L Ž1, .
Author/Authors :
Mark C. Ho، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Pages :
19
From page :
665
To page :
683
Abstract :
Let H be a separable Hilbert space and K be the ideal of compact operators on H. A T K is said to be in L Ž1, . if nŽT. OŽlog n. for n 2 or, equivalently, supN 2Ž1 log N.Ý1N nŽT. , where nŽT. are the singular values Žeigenvalues of T ŽT*T.1 2 .. In this paper, we will give geometric conditions on several classes of operators, including Hankel and composition operators, belonging to L Ž1, .. Specifically, we will show that the function space characterizing the symbols of these operators is a nonseparable Banach space which lies strictly between B1ŽD.and all the other holomorphic Besov spaces BpŽD.Žp 1..
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2002
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
929902
Link To Document :
بازگشت