Title of article :
A Leibniz differentiation formula for
positive operators
Author/Authors :
Chris Impens، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Abstract :
Is is shown that for n→+∞the Leibnizian combination L
n(fg)−fL
n(g)−gL
n(f )
converges uniformly to zero on a compact interval W if the positive operators Ln belong to
a certain class (including Bernstein, Gauss–Weierstrass and many others), and if the moduli
of continuity of f, g satisfy ωW(f ; h)ωW(g; h) = o(h) as h→ 0+. A counterexample
shows that Lipschitz conditions are not appropriate to bring about a second-order version
of this formula. 2002 Elsevier Science (USA). All rights reserved.
Keywords :
Positive linear operator , Exponential-type operator , Lipschitz classes
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications