Title of article :
Convergences of nonexpansive iteration processes in Banach spaces ✩
Author/Authors :
Jong Soo Jung، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Pages :
7
From page :
153
To page :
159
Abstract :
Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm and S be a mapping of the form S = α0I + α1T1 + α2T2 +· · ·+αkTk, where αi 0, α0 > 0, k i=0 αi = 1 and Ti :E →E (i = 1, 2, . . . , k) is a nonexpansive mapping. For an arbitrary x0 ∈ E, let {xn} be a sequence in E defined by an iteration xn+1 = Sxn, n = 0, 1, 2, . . . .We establish a dual weak almost convergence result of {xn} in a reflexive Banach space with a uniformly Gâteaux differentiable norm. As a consequence of the result, a weak convergence result of {xn} is also given.  2002 Elsevier Science (USA). All rights reserved.
Keywords :
fixed point , Nonexpansive mapping , Dual weak almost convergence , Banach limit , Weakconvergence
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2002
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
930116
Link To Document :
بازگشت