Title of article :
On existence and asymptotic stability of solutions of
the degenerate wave equation with nonlinear
boundary conditions ✩
Author/Authors :
M.M. Cavalcanti، نويسنده , , V.N. Domingos Cavalcanti، نويسنده , , J.A. Soriano، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2003
Abstract :
We study the global existence of solutions of the nonlinear degenerate wave equation (ρ 0)
(∗)
ρ(x)y − Δy =0 inΩ ×]0,∞[,
y =0 onΓ1 ×]0,∞[,
∂y
∂ν + y + f (y) + g(y ) =0 onΓ0 ×]0,∞[,
y(x, 0) = y0, (√ρy )(x, 0) = (√ρy1)(x) in Ω,
where y denotes the derivative of y with respect to parameter t , f (s) = C0|s|δ s and g is a nondecreasing
C1 function such that k1|s|ξ+2 g(s)s k2|s|ξ+2 for some k1, k2 > 0 with 0 < δ,ξ
1/(n −2) if n 3 or δ, ξ > 0 if n = 1, 2. The existence of solutions is proved by means of the
Faedo–Galerkin method. Furthermore, when ξ = 0 the uniform decay is obtained by making use of
the perturbed energy method.
2003 Elsevier Science (USA). All rights reserved.
Keywords :
Boundary damping , stabilization , Degenerate equation , Global solvability
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications