Abstract :
We study the convergence rate of an asymptotic expansion for the elliptic and parabolic
operators with rapidly oscillating coefficients. First we propose homogenized expansions which are
convolution forms of Green function and given force term of elliptic equation. Then, using local
Lp-theory, the growth rate of the perturbation of Green function is found. From the representation of
elliptic solution by Green function, we estimate the convergence rate in Lp space of the homogenized
expansions to the exact solution. Finally, we consider L2(0,T : H1(Ω)) or L∞(Ω × (0,T ))
convergence rate of the first order approximation for parabolic homogenization problems.
2003 Elsevier Inc. All rights reserved.