Title of article :
Multiple positive solutions of nonhomogeneous
elliptic systems with strongly indefinite structure
and critical Sobolev exponents
Author/Authors :
Daomin Cao، نويسنده , , 1 and Pigong Han، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Abstract :
In this paper, we study the existence of multiple positive solutions to some Hamiltonian elliptic
systems − v = λu + up + εf (x), − u = μv + vq + δg(x) in Ω; u, v > 0 in Ω; u = v = 0 on
∂Ω, where Ω is a bounded domain in RN (N 3); 0 f , g ∈ L∞(Ω); 1/(p + 1) + 1/(q +1) =
(N − 2)/N, p, q > 1; λ,μ> 0. Using sub- and supersolution method and based on an adaptation of
the dual variational approach, we prove the existence of at least two nontrivial positive solutions for
all λ,μ ∈ (0,λ1) and ε, δ ∈ (0, δ0), where λ1 is the first eigenvalue of the Laplace operator − with
zero Dirichlet boundary conditions and δ0 is a positive number.
2003 Elsevier Inc. All rights reserved
Keywords :
Semilinear elliptic systems , (P.S.)c sequence , Critical point , Dual variational functional method
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications