Title of article :
Asymptotic similarity preserving additive maps on B(X) ✩
Author/Authors :
Shuanping Du، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
11
From page :
20
To page :
30
Abstract :
Let X be an infinite dimensional complex Banach space and denote B(X) the algebra of all bounded linear operators acting on X. We show that an additive surjective map on B(X) preserves asymptotic similarity in both directions if and only if there exist a nonzero scalar c, an invertible bounded linear or conjugate linear operator A and an asymptotic similarity invariant additive functional φ on B(X) such that either Φ(T ) = cATA−1 + φ(T )I for all T or Φ(T ) = cAT ∗A−1 +φ(T )I for all T . In the case that X has infinite multiplicity, especially if X is an infinite dimensional Hilbert space, above asymptotic similarity invariant additive functional φ is always zero.  2003 Elsevier Inc. All rights reserved.
Keywords :
Asymptotic similarity , Asymptotic similarity-preserving additive maps , Similarity
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931078
Link To Document :
بازگشت