Title of article :
A singular boundary value problem for odd-order differential equations ✩
Author/Authors :
Irena Rach°unkov? ? and Svatoslav Stan?ek، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
16
From page :
741
To page :
756
Abstract :
The odd-order differential equation (−1)nx(2n+1) = f (t,x, . . . , x(2n)) together with the Lidstone boundary conditions x(2j)(0) = x(2j)(T ) = 0, 0 j n−1, and the next condition x(2n)(0) = 0 is discussed. Here f satisfying the local Carathéodory conditions can have singularities at the value zero of all its phase variables. Existence result for the above problem is proved by the general existence principle for singular boundary value problems.  2003 Elsevier Inc. All rights reserved.
Keywords :
Odd-order differential equation , Singular boundary value problem , regularization , Existence
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931130
Link To Document :
بازگشت