Title of article :
A sufficient condition for blowup solutions of nonlinear heat equations ✩
Author/Authors :
Shaohua Chen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
10
From page :
227
To page :
236
Abstract :
The author discusses the initial-boundary value problem (ui )t = Δui + fi(u1, . . . , um) with ui |∂Ω = 0 and ui(x, 0) = φi (x), i = 1, . . . , m, in a bounded domain Ω ⊂ Rn. Under suitable assumptions on fi , he proves that, if φi (1 + ε0)ψi in Di ⊂ Ω, for some small ε0 > 0, then the solutions blow up in a finite time, where ψi is a positive solution of Δψi + fi(ψ1, . . . , ψm) 0, with ψi |∂Di = 0 for i = 1, . . . , m. If m = 1, the initial value can be negative in a subset of Ω.  2004 Elsevier Inc. All rights reserved
Keywords :
Parabolic equation , Dirichlet problem , Blowup solutions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931197
Link To Document :
بازگشت