Abstract :
We introduce a strictly weaker version of the Daugavet property as follows: a Banach space X has
this alternative Daugavet property (ADP in short) if the norm identity
max
|ω|=1 Id + ωT =1+ T (aDE)
holds for all rank-one operators T :X → X. In such a case, all weakly compact operators on X
also satisfy (aDE). We give some geometric characterizations of the alternative Daugavet property
in terms of the space and its successive duals. We prove that the ADP is stable for c0-, l1- and
l∞-sums and characterize when some vector-valued function spaces have the property. Finally, we
show that a C∗-algebra (or the predual of a von Neumann algebra) has the ADP if and only if its
atomic projection (respectively, the atomic projection of the algebra) are central. We also establish
some geometric properties of JB∗-triples, and characterize JB∗-triples possessing the ADP and the
Daugavet property.
2004 Elsevier Inc. All rights reserved.