Title of article :
A class of infinitely divisible distributions connected to branching processes and random walks
Author/Authors :
Lennart Bondesson، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2004
Pages :
10
From page :
134
To page :
143
Abstract :
A class of infinitely divisible distributions on {0, 1, 2, . . .} is defined by requiring the (discrete) Lévy function to be equal to the probability function except for a very simple factor. These distributions turn out to be special cases of the total offspring distributions in (sub)critical branching processes and can also be interpreted as first passage times in certain random walks. There are connections with Lambert’s W function and generalized negative binomial convolutions.  2004 Elsevier Inc. All rights reserved
Keywords :
Borel distribution , Lambert’s W , complete monotonicity , random walk , Branching processes , first passage time , Bürmann–Lagrangeformula , Negative binomial distribution , Infinite divisibility
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2004
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931295
Link To Document :
بازگشت