Let Bs Bt.tG0 be a Brownian motion started at xgR. Given a stopping time
t for B and a real valued map F, we show how one can optimally bound:
t
EHF
Keywords :
optimal stopping , integral of Brownian path , Brownian motion , Burkholder]Davis’ inequality , occupation times formula , hitting time , Itˆo]Tanaka formula , square root boundary. , Doob’s optional sampling theorem