Author/Authors :
L. Elsner*، نويسنده , , L. Han، نويسنده , , I. Koltracht، نويسنده , , M. Neumann†، نويسنده , , M. Zippin، نويسنده ,
Abstract :
Bernius and Blanchard of Bielefeld University in Germany have conjectured
the following polygon inequality: for any two sets of vectors x1, . . . , xn and y1, . . . , yn
in Rm,
n
). 5xiyxj5q 5yiyyj5F 5xiyyj5
i-j i-j i, js1
in the 2-norm and that, moreover, equality holds in ). if and only if there exists
a permutation p on 1, 2, . . . , n4such that yisxp i., is1, . . . , n. That ). is valid
is a consequence of an inequality that holds in certain Banach spaces and which
was recently proved by Lennard, Tongue, and Weston. We therefore characterize
here the case of equality in )., actually for vectors in the space XsL1 V, m.,
and subsequently use this characterization to complete the proof of the
Bernius]Blanchard conjecture concerning the equality case in a Hilbert space.