Title of article :
The Length of the de Rham Curve
Author/Authors :
Serge Dubuc، نويسنده , , Jean-Louis Merrien and Paul Sablonni`ere، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1998
Pages :
14
From page :
182
To page :
195
Abstract :
The length L of the de Rham curve is the common limit of two monotonic sequences of lengths ln‘ and Ln‘ of inscribed and circumscribed polygons, respectively. Numerical computations show that their convergence is linear with the same convergence rate. This result is easy to prove for the parabola. For arbitrary de Rham curves, we prove two nearby results. First, the existence of a limit q 2 “0; 1’ of the sequence of ratios LnC1 − L‘=Ln − L‘ implies the convergence to the same limit of the two sequences lnC1 − L‘=ln − L‘ and LnC1 − lnC1‘=Ln − ln‘. Second, the sequence LnC1 − Ln‘ is bounded by a convergent geometric sequence. In practice, this allows us to accelerate the convergence of both sequences by standard extrapolation algorithms.
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
1998
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
931760
Link To Document :
بازگشت