Title of article :
B-Convexity, the Analytic Radon–Nikodym Property,
and Individual Stability of C0-Semigroups
Author/Authors :
S.-Z. Huang* and J. M. A. M. van Neerven†، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1999
Abstract :
Let T D Ttt 0 be a C0-semigroup on a Banach space X, with generator
A and growth bound !. Assume that x0 2 X is such that the local resolvent
7! R ;Ax0 admits a bounded holomorphic extension to the right half-plane
Re >0. We prove the following results:
(i) If X has Fourier type p 2 1; 2, then limt!1 Tt 0 − A− x0 D 0
for all > 1=p and 0 > !.
(ii) If X has the analytic RNP, then limt!1 Tt 0 − A− x0 D 0 for all
> 1 and 0 > !.
(iii) If X is arbitrary, then weak-limt!1
Tt 0 − A− x0 D 0 for all > 1
and 0 > !.
As an application we prove a Tauberian theorem for the Laplace transform of
functions with values in a B-convex Banach space.
Keywords :
resolvent estimates , B-convex , analytic Radon–Nikodym property , Fourier type , Tauberian theorems , individual stability , C0-semigroup
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications