Title of article :
Periodic Solutions of Infinite Delay Evolution Equations
Author/Authors :
James H. Liu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2000
Pages :
18
From page :
627
To page :
644
Abstract :
For A t. and f t, x, y.T-periodic in t, we consider the differential equation with infinite delay in a general Banach space X, u9 t. qA t.u t. sf t, u t., ut., t)0, u s. sf s., sF0, 0.1. where the resolvent of the unbounded operator A t. is compact and f is continu- ous in its variables, and ut s.su tqs., sF0. We first show that the Poincar´e operator given by P f.suT f. i.e., T units along the unique solution u f. determined by the initial function f. is a condensing operator with respect to Kuratowski’s measure of non-compactness in a phase space Cg , and then derive periodic solutions from bounded solutions by using Sadovskii’s fixed point theorem. This extends the study of deriving periodic solutions from bounded solutions to infinite delay differential equations in general Banach spaces
Keywords :
Periodic Solutions , Kuratowski’s measure of noncompactness , Infinite delay , Sadovskii’s fixed point theorem.
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2000
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
932143
Link To Document :
بازگشت