Title of article :
Nonlinear Diffusion Equations on Unbounded Fractal Domains
Author/Authors :
Kenneth J. Falconer and Jiaxin Hu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
19
From page :
606
To page :
624
Abstract :
We investigate the nonlinear diffusion equation ∂u/∂t = u + up p > 1 on certain unbounded fractal domains, where is the infinitesimal generator of the semigroup associated with a corresponding heat kernel. We show that there are nonnegative global solutions for non-negative initial data ifp > 1+2/ds , while solutions blow up if p ≤ 1 + 2/ds , where ds is the spectral dimension of the domain. We investigate smoothness and H¨older continuity of solutions when they exist
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
932558
Link To Document :
بازگشت