Title of article :
Strong Comparison Principle for Radial Solutions of Quasi-Linear Equations
Author/Authors :
M. S. Prashanth، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
5
From page :
366
To page :
370
Abstract :
Let be either a ball or an annulus centered about the origin in N and p the usual p-Laplace operator in N. Let f1 f2 ∈ L1 loc be two radial functions on with f1 ≤ f2 f1 ≡ f2. Let b → be a non-decreasing continuous function. Let u1 u2 ∈ C1 β β ∈ 0 1 be any two radial weak solutions of − pui = b ui + fi in . We then show that u1 ≤ u2 in implies u1 < u2 in and also that appropriate versions of Hopf boundary point principle hold.
Keywords :
strong comparison principle , p-Laplace operator , quasi-linearequations.
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
932618
Link To Document :
بازگشت