Title of article :
Strong Comparison Principle for Radial Solutions of
Quasi-Linear Equations
Author/Authors :
M. S. Prashanth، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Abstract :
Let be either a ball or an annulus centered about the origin in N and p the
usual p-Laplace operator in N. Let f1 f2
∈ L1
loc
be two radial functions on
with f1
≤ f2 f1
≡ f2. Let b → be a non-decreasing continuous function. Let
u1 u2
∈ C1 β β ∈ 0 1 be any two radial weak solutions of − pui
= b ui
+ fi
in . We then show that u1
≤ u2 in implies u1 < u2 in and also that appropriate
versions of Hopf boundary point principle hold.
Keywords :
strong comparison principle , p-Laplace operator , quasi-linearequations.
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications