Title of article :
On the Regularity of Harmonic Functions and Spherical Harmonic Maps Defined on Lattices
Author/Authors :
Lawrence E. Thomas، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2001
Pages :
18
From page :
633
To page :
650
Abstract :
A growth lemma for certain discrete symmetric Laplacians defined on a lattice Zd δ = δZd ⊂ Rd with spacing δ is proved. The lemma implies a De Giorgi theorem, that the harmonic functions for these Laplacians are equi-H¨older continuous, δ → 0. These results are then applied to establish regularity properties for the harmonic maps defined on Zd δ and taking values in an n-dimensional sphere Sn, uniform in δ. Questions of the convergence δ → 0 and the Dirichlet problem for these discrete harmonic maps are also addressed
Keywords :
growth lemma , ?-models , harmonic functions , harmonic maps , Difference equations , ellipticregularity
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2001
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933322
Link To Document :
بازگشت