Title of article :
The Spectral Expansion for a Nonself-adjoint Hill Operator with a Locally Integrable Potential
Author/Authors :
O. A. Veliev and M. Toppamuk Duman، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Pages :
15
From page :
76
To page :
90
Abstract :
We construct the spectral expansion for the one-dimensional Schr¨odinger operator L = − d2 dx2 + q x −∞ < x < ∞ in L2 −∞ ∞ , where q x is a 1-periodic, Lebesgue integrable on [0,1], and complex-valued potential. We obtain the asymptotic formulas for the eigenfunctions and eigenvalues of the operator Lt , for t = 0, π, generated by this operation in L2 0 1 and the t-periodic boundary conditions. Using it, we prove that the eigenfunctions and associated functions of Lt form a Riesz basis in L2 0 1 for t = 0, π. Then we find the spectral expansion for the operator L.
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2002
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933429
Link To Document :
بازگشت