Title of article :
Asymptotics of Solutions to the Boundary-Value
Problem for the Korteweg–de Vries–Burgers
Equation on a Half-Line
Author/Authors :
NAKAO HAYASHI، نويسنده , , ELENA I. KAIKINA and PAVEL I. NAUMKIN، نويسنده , , Ilia A. Shishmarev، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Abstract :
We study the following initial–boundary value problem for the Korteweg–de
Vries–Burgers equation,
0 1
ut + −1 αuux − uxx + −1 αuxxx = 0 x t ∈ R+ × R+
u x 0 = u0 x x∈ R+
∂n
xu 0 t = 0 n= 0 α t ∈ R+
where α = 0 1. We prove that if the initial data u0 ∈ H0 ω ∩ H1 0, where
Hs k = f ∈ L2
f Hs k = x
k i∂x
sf L2 < ∞ , ω ∈ 1
2 3
2 , and the norm
u0 H0 ω + u0 H1 0 is sufficiently small, then there exists a unique solution
u ∈ C 0 ∞ H0 ∩ C 0 ∞ H1 ω of the initial–boundary value problem (0.1),
343
0022-247X/02 $35.00
2002 Elsevier Science
All rights reserved.
344 hayashi, kaikina, and shishmarev
where ∈ 0 1
2 . Moreover, if the initial data are such that x1+μu0 x ∈ L1,
μ = ω − 1
2 , then there exists a constant A such that the solution has the asymptotics
u x t =
A
t
α x
2√t
t + O min x
√t
1 t−1−
μ2
for t →∞uniformly with respect to x > 0 where α = 0 1, 0 q t = q/√π e−q2 ,
1 q t = 1/2√π√t e−q2
2q√t − 1 + e−2q√t .
Keywords :
Large time asymptotics , dissipative nonlinear evolution equation , Korteweg–de Vries–Burgers equation , half-line.
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications