Title of article :
Linear Recursive Schemes and Asymptotic Expansion
Associated with the Kirchoff–Carrier Operator
Author/Authors :
Nguyen Thanh Long، نويسنده , , Alain Pham Ngoc Dinh، نويسنده , , Tran Ngoc Diem، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Abstract :
In this paper we consider a nonlinear wave equation with the Kirchoff–Carrier
operator,
utt − b0 + B ∇u 2 u = f x t u ux ut
x ∈ = 0 1 0 < t < T
u 0 t = u 1 t = 0
u x 0 = ˜ u0 x ut x 0 = ˜ u1 x
1
2
3
where b0 > 0 is a given constant and B f are the given functions. In Eq. (1) the
function B ∇u 2 depends on the integral ∇u 2 =
∇u x t
2 dx. In this paper
we associate with problem (1)–(3) a linear recursive scheme for which the existence
of a local and unique solution is proved by using the standard compactness
argument. If B ∈ C2 R
+ B1 ∈ C1 R
+ f ∈ C2 ×
0 ∞ × R3 , and f1 ∈
C1 ×
0 ∞ × R3 then an asymptotic expansion of order 2 in ε is obtained with
a right-hand side of the form f x t u ux ut + εf1 x t u ux ut , and B stands for
B + εB1, for ε sufficiently small.
Keywords :
Kirchoff–Carrier operator , Galerkinmethod , asymptotic expansion , Linear recurrent sequence
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications