Title of article :
Maximal Singular Integral Operators Along Surfaces
Author/Authors :
Dashan Fan، نويسنده , , Quan Zheng1، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2002
Abstract :
Let b y be a bounded radial function and y = γ1 y γ2 y γm y ,
where each γj y j = 1 m is a real-valued radial function. For x y ∈ n
and x
∗ ∈ m, we define the maximal singular integral along the surface y y by
T∗f x x
∗ = sup
ε>0 y >ε
f x − y x
∗ − y b y y −n y dy
Suppose that is an H1 function on the sphere Sn−1 satisfying Sn−1 x dσ x = 0. We prove that T∗ is bounded on Lp n+m 1 < p < ∞, provided the lower
dimensional maximal function
M g x1 x
∗ = sup
k∈
2−k 2k+1
2k g x1 − t x
∗ − t dt
is bounded on Lp m+1 for all p > 1. The result is an extension and improvement
of the main theorem in [S. Lu, Y. Pan, and D. Yang, Rough singular integrals
associated to surfaces of revolution, Proc. Amer. Math. Soc. 129 (2001), 2931–2940].
Keywords :
Singular integral , Hardy space , Rough kernel
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications