Title of article :
Geometric properties of the self-adjoint Sturm–Liouville problems
Author/Authors :
Xinhua Zhang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
6
From page :
91
To page :
96
Abstract :
In this paper, geometric properties of the self-adjoint Sturm–Liouville problems are investigated. It is proved that for linear self-adjoint Sturm–Liouville problems, the eigenfunctions correspond exactly to the projections of the curvature lines on the energy functional surface with an appropriate metric and that the eigenvalues correspond exactly to the principal curvatures (at the origin) of the same energy functional surface.  2004 Elsevier Inc. All rights reserved
Keywords :
Infinite-dimensional surface , energy functional , Lines of curvature , Principal curvature , Sturm–Liouville problem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2005
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
933801
Link To Document :
بازگشت