Title of article :
Geometric properties of the self-adjoint
Sturm–Liouville problems
Author/Authors :
Xinhua Zhang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
In this paper, geometric properties of the self-adjoint Sturm–Liouville problems are investigated.
It is proved that for linear self-adjoint Sturm–Liouville problems, the eigenfunctions correspond
exactly to the projections of the curvature lines on the energy functional surface with an appropriate
metric and that the eigenvalues correspond exactly to the principal curvatures (at the origin) of the
same energy functional surface.
2004 Elsevier Inc. All rights reserved
Keywords :
Infinite-dimensional surface , energy functional , Lines of curvature , Principal curvature , Sturm–Liouville problem
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications