Title of article :
Spectral resolutions in Dedekind σ-complete
-groups ✩
Author/Authors :
S. Pulmannova، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
Using recent results on a generalized form of the Loomis–Sikorski theorem [A. Dvureˇcenskij,
Loomis–Sikorski theorem for σ-complete MV-algebras and -groups, J. Austral. Math. Soc. Ser. A
68 (2000) 261–277; D. Mundici, Tensor product and the Loomis–Sikorski theorem for MV-algebras,
Adv. Appl. Math. 22 (1999) 227–248], it is shown that a unital Dedekind σ-complete -group is
a compatible Rickart comgroup in the sense of D.J. Foulis [D.J. Foulis, Spectral resolutions in a
Rickart comgroup, Rep. Math. Phys. 54 (2004) 229–250]. In particular, elements in unital Dedekind
σ-complete -groups and, consequently, elements in σ-MV-algebras, admit uniquely defined spectral
resolutions similar to spectral resolutions of self-adjoint operators. A functional calculus and spectra
of elements are considered in relation with the Loomis–Sikorski representation by functions.
2005 Elsevier Inc. All rights reserved
Keywords :
Rickart mapping , spectral resolution , Observable , MV-algebra , Strong unit , Tribe , Loomis–Sikorski theorem , g-tribe , Compression , Dedekind ?-complete -group
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications