Author/Authors :
Boumediene Abdellaoui، نويسنده , , Ireneo Peral، نويسنده ,
Abstract :
We consider the following elliptic problem:
−div(|x|−2γ ∇u) + u
|x|2(γ+1) = f (x,u), u 0 in Ω,
u|∂Ω = 0
(1)
and the corresponding parabolic version
ut − div(|x|−2γ ∇u) + u
|x|2(γ+1) = f (x,u), u 0 in Ω ×(0,T ),
u(x, t) =0 for(x, t) ∈ ∂Ω ×(0,T ),
u(x, 0) = ϕ(x) if x ∈ Ω,
(2)
Ω ⊂ RN is a smooth bounded domain with 0 ∈ Ω and −∞<γ < N−2
2 . We will consider in particular
the critical case where f (x,u) = λ uα
|x|2(γ+1) and α 1. Conditions on γ , λ, α are given to obtain
existence and nonexistence result.
2005 Elsevier Inc. All rights reserved
Keywords :
elliptic equations , Caffarelli–Kohn–Nirenberg inequalities , Maximum principle , blow-up