Title of article :
Jordan zero-product preserving additive maps
on operator algebras
Author/Authors :
L. Zhao 1، نويسنده , , J. Hou?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
Let Φ : A → B be an additive surjective map between some operator algebras such that
AB + BA = 0 implies Φ(A)Φ(B) + Φ(B)Φ(A) = 0. We show that, under some mild conditions,
Φ is a Jordan homomorphism multiplied by a central element. Such operator algebras include von
Neumann algebras, C∗-algebras and standard operator algebras, etc. Particularly, if H and K are
infinite-dimensional (real or complex) Hilbert spaces and A = B(H) and B = B(K), then there exists
a nonzero scalar c and an invertible linear or conjugate-linear operator U : H →K such that
either Φ(A) = cUAU−1 for all A ∈ B(H), or Φ(A) = cUA∗U−1 for all A ∈ B(H).
2005 Elsevier Inc. All rights reserved
Keywords :
Jordan homomorphisms , Jordan zero-products , Operator Algebras
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications