Title of article :
Maximal functions along surfaces in product spaces
Author/Authors :
Hung Viet Le، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
11
From page :
422
To page :
432
Abstract :
Under certain natural conditions of a measurable radial function Γ :Rn × Rm→R, Γ (y1, y2) = Γ (|y1|, |y2|), we show that the maximal function along surface MΓ f (x1, x2, x3) = sup r1,r2>0 1 rn 1 rm 2 |y2| r2 |y1| r1 f x1 −y1, x2 − y2, x3 −Γ |y1|, |y2| dy1 dy2 is bounded in Lp(Rn ×Rm ×R) for all p >1 and n,m 1.  2005 Elsevier Inc. All rights reserved
Keywords :
Product space , Along surface , Maximal function , Hardy–Littlewood maximal function
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2006
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934413
Link To Document :
بازگشت