Abstract :
Under certain natural conditions of a measurable radial function Γ :Rn × Rm→R, Γ (y1, y2) =
Γ (|y1|, |y2|), we show that the maximal function along surface
MΓ f (x1, x2, x3)
= sup
r1,r2>0
1
rn
1 rm
2
|y2| r2
|y1| r1
f
x1 −y1, x2 − y2, x3 −Γ
|y1|, |y2|
dy1 dy2
is bounded in Lp(Rn ×Rm ×R) for all p >1 and n,m 1.
2005 Elsevier Inc. All rights reserved
Keywords :
Product space , Along surface , Maximal function , Hardy–Littlewood maximal function