Title of article :
A tale of two conformally invariant metrics
Author/Authors :
H.S. Bear، نويسنده , , C. Wayne Smith، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
The Harnack metric is a conformally invariant metric defined in quite general domains that coincides
with the hyperbolic metric in the disk.We prove that the Harnack distance is never greater than
the hyperbolic distance and if the two distances agree for one pair of distinct points, then either the
domain is simply connected or it is conformally equivalent to the punctured disk.
2005 Elsevier Inc. All rights reserved
Keywords :
Schwarz–Pick lemma , Harnack metric , Hyperbolic metric , Conformal invariance
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications