Title of article :
An analytic approximate method for solving
stochastic integrodifferential equations
Author/Authors :
Miljana Jovanovi´c and Svetlana Jankovi´c ?، نويسنده , , Dejan Ili´c ?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
In this paper we compare the solution of a general stochastic integrodifferential equation of the Ito
type, with the solutions of a sequence of appropriate equations of the same type, whose coefficients
are Taylor series of the coefficients of the original equation. The approximate solutions are defined
on a partition of the time-interval. The rate of the closeness between the original and approximate
solutions is measured in the sense of the Lp-norm, so that it decreases if the degrees of these Taylor
series increase, analogously to real analysis. The convergence with probability one is also proved.
© 2005 Elsevier Inc. All rights reserved
Keywords :
Stochastic integrodifferential equation , Taylor approximation , Approximate solution , Convergence with probability one , Lp-convergence
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications