Title of article :
linear approximation for the regular reflection of a weak shock at a wedge ✩
Author/Authors :
Zhonghai Xu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
17
From page :
712
To page :
728
Abstract :
The problem of shock reflection by a wedge in the flow dominated by the unsteady potential flow equation is an important problem. In weak regular reflection, the flow behind the reflected shock is immediately supersonic and becomes subsonic further downstream. The reflected shock is transonic. Its position is a free boundary for the unsteady potential equation, which is degenerate at the sonic line in self-similar coordinates. Applying the special partial hodograph transformation used in [Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math. LVII (2004) 1-51; Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle II, 3-D case, IMS, preprint, 2003], we derive a nonlinear degenerate elliptic equation with nonlinear boundary conditions in a piecewise smooth domain. When the angle between incident shock and wedge is small, we can see the weak regular reflection as the disturbance of normal reflection as in [Chen Shuxing, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21(78) (1996) 1103–1118]. By linearizing the resulted nonlinear equation and boundary conditions with the above viewpoint in [Chen Shuxing, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21(78) (1996) 1103–1118], we obtain a linear degenerate elliptic equation with mixed boundary conditions in a curved quadrilateral domain. By means of elliptic regularization techniques, a delicate a priori estimate and compact arguments, we show that the solution of the linearized problem is smooth in the interior and Lipschitz continuous up to the degenerate boundary. © 2005 Elsevier Inc. All rights reserved
Keywords :
Degenerate elliptic equation , shock wave , Regular reflection , Potential equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2006
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
934822
Link To Document :
بازگشت