Title of article :
Mean ergodicity of positive operators in KB-spaces
Author/Authors :
S. Alpay، نويسنده , , A. Binhadjah، نويسنده , , E.Yu. Emelyanov، نويسنده , , Z. Ercan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
We prove that any positive power bounded operator T in a KB-space E which satisfies
lim
n→∞
dist 1
n
n−1
k=0
T kx,[−g,g] + ηBE = 0 ∀x ∈ E, x 1 , (1)
where BE is the unit ball of E, g ∈ E+, and 0 η < 1, is mean ergodic and its fixed space Fix(T ) is finite
dimensional. This generalizes the main result of [E.Yu. Emelyanov, M.P.H. Wolff, Mean lower bounds
for Markov operators, Ann. Polon. Math. 83 (2004) 11–19]. Moreover, under the assumption that E is a
σ-Dedekind complete Banach lattice, we prove that if, for any positive power bounded operator T , the condition
(1) implies that T is mean ergodic then E is a KB-space.
© 2005 Elsevier Inc. All rights reserved.
Keywords :
Mean ergodic operator , KB-space , Positive operator
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications