Title of article :
A maximum principle for evolution
Hamilton–Jacobi equations on Riemannian manifolds
Author/Authors :
Daniel Azagra، نويسنده , , 1، نويسنده , , Juan Ferrera، نويسنده , , Fernando L?pez-Mesas، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
We establish a maximum principle for viscosity subsolutions and supersolutions of equations of the form
ut +F(t,dxu) = 0, u(0, x) = u0(x), where u0 :M →R is a bounded uniformly continuous function, M is
a Riemannian manifold, and F : [0,∞) × T ∗M →R. This yields uniqueness of the viscosity solutions of
such Hamilton–Jacobi equations.
© 2005 Elsevier Inc. All rights reserved
Keywords :
Hamilton–Jacobi equations , Riemannian manifolds , Viscosity solutions
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications