Abstract :
This paper is a continuation of the paper [T.Y. Lee, Product variational measures and Fubini–Tonelli
type theorems for the Henstock–Kurzweil integral, J. Math. Anal. Appl. 298 (2004) 677–692], in
which we proved several Fubini–Tonelli type theorems for the Henstock–Kurzweil integral. Let f be
Henstock–Kurzweil integrable on a compact interval r
i=1[ai, bi] ⊂ Rr . For a given compact interval
s
j=1[cj , dj] ⊂ Rs, set
Tf s
j=1
[cj , dj ] := g: f ⊗g ∈HK r
i=1
[ai, bi] ×
s
j=1
[cj , dj ] .
We prove that if g ∈ Tf ( s
j=1[cj , dj ]) and ν is a finite signed Borel measure on s
j=1[cj , dj ), then
the function (y1, . . . , ys ) →g(y1, . . . , ys)ν( s
j=1[cj , yj )) belongs to Tf ( s
j=1[cj , dj ]). Moreover, this
result cannot be improved.
© 2005 Elsevier Inc. All rights reserved
Keywords :
Henstock–Kurzweil integral , Cauchy–Lebesgue integral , multipliers , dual space