Title of article :
Weighted norm inequalities of Bochner–Riesz means
Author/Authors :
Ming-Yi Lee، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
8
From page :
1274
To page :
1281
Abstract :
Let w be a Muckenhoupt weight and H p w(Rn) be the weighted Hardy spaces. We use the atomic decomposition of H p w(Rn) and their molecular characters to show that the Bochner–Riesz means TδR are bounded on H p w(Rn) for 0

max{n/p − (n + 1)/2, [n/p]rw(rw − 1)−1 − (n + 1)/2}, where rw is the critical index of w for the reverse Hölder condition. We also prove the H p w − L p w boundedness of the maximal Bochner–Riesz means T δ ∗ for 0

n/p −(n +1)/2. © 2006 Elsevier Inc. All rights reserved.

Keywords :
Ap weights , Atomic decomposition , Bochner–Riesz means , Molecular characterization , Weighted Hardyspaces
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2006
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935071
Link To Document :
بازگشت