Title of article :
On the existence and uniqueness of minima and maxima
on spheres of the integral functional of the calculus
of variations
Author/Authors :
Biagio Ricceri، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
Given a bounded domain Ω ⊂ Rn, we prove that if f :Rn+1 →R is a C1 function whose gradient is
Lipschitzian in Rn+1 and non-zero at 0, then, for each r > 0 small enough, the restriction of the integral
functional u→ Ω f (u(x),∇u(x)) dx to the sphere {u ∈ H1(Ω): Ω(|∇u(x)|2 + |u(x)|2)dx = r} has a
unique global minimum and a unique global maximum.
© 2006 Elsevier Inc. All rights reserved
Keywords :
Sobolev space , Integral functional , Minimum , Maximum , Sphere , Existence , Uniqueness
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications