Title of article :
On the stability of an n-dimensional cubic
functional equation
Author/Authors :
Hahng-Yun Chu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Abstract :
Let n 2 be an integer number. In this paper, we investigate the generalized Hyers–Ulam–Rassias stability
in Banach spaces and also Banach modules over a Banach algebra and a C∗-algebra, and the stability
using the alternative fixed point of an n-dimensional cubic functional equation in Banach spaces:
f n−1
j=1
xj +2xn + f n−1
j=1
xj − 2xn +
n−1
j=1
f (2xj )
= 2f n−1
j=1
xj + 4
n−1
j=1 f (xj +xn) +f (xj − xn) .
© 2006 Elsevier Inc. All rights reserved
Keywords :
Hyers–Ulam–Rassias stability , Cubic mapping
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications