Title of article :
On convergence of the solutions of the difference equation xn+1 = 1+ xn−1 xn ✩
Author/Authors :
Taixiang Sun، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
4
From page :
1491
To page :
1494
Abstract :
In this note we study the difference equation xn+1 = 1+ xn−1 xn , n= 0, 1, . . . , where initial values x−1, x0 ∈ (0,+∞), and obtain the set of all initial values x−1, x0 ∈ (0,+∞) such that the positive solutions {xn}∞n=−1 of that equation converges to the unique equilibrium x = 2. This answers the open problem 4.8.9 proposed by M.R.S. Kulenovic and G. Ladas in [M.R.S. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations, with Open Problems and Conjectures, Chapman and Hall/CRC, 2002]. © 2006 Elsevier Inc. All rights reserved.
Keywords :
equilibrium , Positive solution , Difference equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935199
Link To Document :
بازگشت