Title of article :
Global attractors for p-Laplacian equation ✩
Author/Authors :
Meihua Yang، نويسنده , , Chunyou Sun، نويسنده , , Chengkui Zhong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
13
From page :
1130
To page :
1142
Abstract :
The existence of a (L2(Ω),W 1,p 0 (Ω) ∩ Lq(Ω))-global attractor is proved for the p-Laplacian equation ut − div(|∇u|p−2∇u) + f (u) = g on a bounded domain Ω ⊂ Rn (n 3) with Dirichlet boundary condition, where p 2. The nonlinear term f is supposed to satisfy the polynomial growth condition of arbitrary order c1|u|q −k f (u)u c2|u|q +k and f (u) −l, where q 2 is arbitrary. There is no other restriction on p and q. The asymptotic compactness of the corresponding semigroup is proved by using a new a priori estimate method, called asymptotic a priori estimate. © 2006 Elsevier Inc. All rights reserved
Keywords :
Attractors , p-Laplacian equation , Asymptotic a priori estimate
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2007
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
935400
Link To Document :
بازگشت